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Features of modulational instability of partially coherent light:
Importance of the incoherence spectrum
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It is shown that the properties of the modulational instability of partially coherent waves propagating in a
nonlinear Kerr medium depend crucially on the profile of the incoherent field spectrum. Under certain condi-
tions, the incoherence may even enhance, rather than suppress, the instability. In particular, it is found that the
range of modulationally unstable wave numbers does not necessarily decrease monotonically with increasing
degree of incoherence and that the modulational instability may still exist even when long wavelength pertur-
bations are stable.
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The modulational instability~MI ! of coherent constan
amplitude waves in nonlinear Kerr media is one of the m
fundamental phenomena resulting from the interplay
tween nonlinear phase modulation and linear dispers
diffraction and has attracted much interest over many ye
@1–3#. Recent advances in the area of nonlinear optics
particular new results concerning the nonlinear propaga
of partially incoherent light and the advent of incohere
solitons@4#, have prompted a revisal of this issue during t
past decade. The general understanding that emerged
these studies is that the wave intensity threshold for the o
of the MI is increased by the wave incoherence. With t
picture in mind, it is remarkable that in a recent investigat
of the transverse instability~TI! of solitons@5#, it was found
that the range of modulationally unstable wave numbers
not monotonously decrease with increasing degree of in
herence. In fact, it first increased until eventually it started
decrease.

Inspired by this result, we consider, in the present wo
the problem of the modulational instability of partially co
herent waves in more detail and show that the picture is m
complicated than previously thought. In order to simplify t
analysis and to bring out clearly the new features, the an
sis is carried out for the longitudinal modulational instabili
We find that the effect of the incoherence on the MI is s
sitive to the profile of the incoherent power spectrum. For
often used assumption of a Lorentzian incoherence spect
the range of unstable wave numbers does indeed decr
monotonously with increasing degree of incoheren
whereas, e.g., for a Gaussian spectrum, the range firs
creases and then starts to decrease monotonously. This
agrees well with the unexpected feature observed in@5#.
Also, several other subtle effects are shown to be possible
particular, it is found that the threshold for the MI to b
completely quenched is not necessarily associated with
long wavelength limit. Modulations may be stable in th
limit, but still be unstable for finite wave numbers. This im
plies that the threshold for total quench cannot, in a gen
case, be determined by simplifying the analysis to consid
ing only the long wavelength limit as is done in, e.g.,@6,7#.
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The starting point of our analysis is the normalized no
linear Schro¨dinger equation describing the one-dimension
propagation of a partially incoherent wave in a dispersive~or
diffractive! nonlinear medium, viz.

i ~]c!/~]t !1 1
2 ~]2c!/~]x2!1^ucu2&c50, ~1!

where the bracket,̂•••&, denotes statistical average@8#. This
equation is valid under the assumption that the medium
sponse time is much larger than the characteristic time of
stochastic intensity fluctuations.

The modulational instability of small perturbations of th
corresponding steady state solution has been analyzed u
different, but equivalent@9#, mathematical formalisms. An
analysis based on the formalism of the correlation funct
@5,7,10#, or on the Wigner approach@8#, results in the disper-
sion relation

E
2`

1`r0~p2k/2!2r0~p1k/2!

kp1 ig
dp51, ~2!

with r0 being the Wigner distribution function of the unpe
turbed cw wave. However, using the transformatio
p1k/25u, p2k/25u8, Eq. ~2! can be expressed as

E
2`

1` r0~u8!du8

k~u81k/21 ig/k!
2E

2`

1` r0~u!du

h~u2k/21 ig/k!
51. ~3!

This is then easily rewritten as

k2E
2`

1` r0~u!du

k4/41~ iku1g!2
51, ~4!

which is the same expression as the coherent density
proach@11#, provided we identifyr0(u)5A2G(u) with A2

being the averaged normalized field intensity of the stati
ary state andG(u) being its normalized angular spectrum
Throughout this Rapid Communication we will use both e
pressions for the dispersion relation interchangeably, si
some parts of the analysis are most conveniently handled
one approach, and some by the other.

An explicit analytical solution of the dispersion relatio
Eq. ~2! or Eq. ~4!, is possible only for some particular inco
©2004 The American Physical Society01-1
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herence spectra. Specifically, in the case of the Lorent
spectrumG(u)5u0 /@p(u21u0

2)#, whereu0 is the width of
the spectrum, it has been shown@8# that the solution can be
expressed as

g~k,u0!5g0~k!2ku0 ~5!

whereg0(k) is the growth rate in the coherent case@G(u)
5d(u)# i.e., g0(k)5kAA22k2/4, with A2.k2/4. This ana-
lytical result shows explicitly that the effect of the incohe
ence, provided it is large enough, is to suppress the MI
any value of the perturbation wave number. However, as
be demonstrated in this Rapid Communication, this re
depends crucially on the form of the incoherence spect
and is not a general feature of the MI of partially incohere
light.

The restricted generality of the result expressed by Eq.~5!
can be directly inferred by studying in more detail the pro
erties of the cutoff wave number,kc , i.e., the value ofk at
which the growth rate vanishes. According to Eq.~5!, valid
for the Lorentzian spectrum,kc is shifted monotonously to
the left ~decreased! with increasing degree of incoherenc
u0 : kc

254(A22u0
2). For the case of a general coheren

spectrum,kc is determined by the following equation:

PVA2E
2`

1` G~u!du

kc
2/42u2

51, ~6!

where PV denotes the Cauchy principal value. When
power spectrum is well localized, in the sense that its rm
width is much smaller than the cutoff wavelength, the co
tributions from the zeros of the denominator are negligi
and the denominator can be expanded to yield

1

A2
'E

2`

1` G~u!

kc
2/4

F11
u2

kc
2/4

1•••Gdu. ~7!

Keeping only the first two terms of the expansion one o
tains an approximate solution for the effect of partial coh
ence on the cutoff wave number as follows:

kc
2/4'A21^u2&, ~8!

where^u2&[*u2G(u)du. Thuskc is found to increase for
increasing degree of incoherence, which at first sight se
to be in contradiction to the behavior of the previously fou
exact solution for the Lorentzian spectrum. However,
Lorentz spectrum is not well localized in the sense defin
above, since the valuêu2& does not exist. A first indication
of such an incoherence-induced increase of the range
modulationally unstable wave numbers was observed
Torreset al. @5# in a numerical study of the transverse ins
bility ~TI! of soliton structures using a Gaussian spectral d
tribution. It should be emphasized though that the effect w
occur for transverse as well as for longitudinal modulatio
instabilities. Although the Lorentz spectrum proper is n
well localized, it can easily be made so by considering
bounded Lorentz spectrum, i.e.,

G~u,u0 ,um!5~1/p!@u0/~u21u0
2!# CW~um2uuu!, ~9!
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whereW(x)50 if x,0, W(x)51 if x.0, um is the bound-
ary of the spectrum andC is a normalization constant. Fo
this spectrum one can explicitly show that, depending on
value ofum , the cutoff shift may either increase or decrea
with increasingu0.

Another perturbative solution of the dispersion equat
for the MI is possible in the long wave limit whenk!u0,
whereu0 is the characteristic width of the spectrumG(u). In
this case one can use a Taylor expansion aroundp of the
numerator in Eq.~2!. IntroducingG5g/k we obtain

152A2E
2`

1`G8~p!

p1 iG
dp2

1

24
A2k2E

2`

1`G-~p!

p1 iG
dp. ~10!

This simplified approximation@however, without the last
term on the right-hand side of Eq.~10!# was used previously
@7# to analyze the threshold condition for the suppression
the MI. Actually, assumingG(p)5G(2p) and G5G*
!u0, the first integral can be approximated as

E
2`

1`G8~p!

p1 iG
dp52J11pGD1 , ~11!

where

J152E
2`

1`G8

p
dp, D152

G8

p U
p50

. ~12!

Within this approximation the dispersion relation become

pD1G5J12A22. ~13!

The equalityJ15A22 can thus be taken as determining t
threshold for MI development. While this is true in the lim
of vanishingk, it is clear that by taking into account also th
next term in the expansion Eq.~10!, instead of Eq.~13!, one
obtains the solution:

pD1G5J12A222 1
24 k2J3 , ~14!

where

J35E
2`

1`

~G-/p! dp. ~15!

This analysis is valid providedD1Þ0; in other cases a ful
solution of Eq.~10! is needed. Performing the calculation
one finds that for a Gaussian or a Lorentzian incohere
spectrum, the values ofD1 , J1, andJ3 are all positive quan-
tities. Thus in such cases, Eq.~13! provides a sufficient con-
dition for the suppression of the instability, as found in t
works of Anastassiouet al. @6# and Soljacˇić et al. @7#. Nev-
ertheless, there may exist spectra for which the factorJ3 is
negative, implying there is positive growth of the perturb
tion for finite k, despite the fact that the solution of Eq.~13!
~the long wave limit! givesG2<0. Consequently, the defini
tion for the suppression of the modulational instability as
threshold value given by the long wavelength limit appro
mation is not appropriate.

The simplest illustration of the ambiguity of the thresho
condition based on the long wavelength limit can be giv
1-2
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by analyzing a rectangular spectrum profile withG(p)
51/2um for p in the interval2um,p,um , whereasG(p)
50 outside this interval. For this simple spectrum, the in
gral in Eq. ~4! may be evaluated exactly and the followin
dispersion relation is obtained:

g25k2F kum

tanh~kum /A2!
2

k2

4
2um

2 G . ~16!

In the limit kum!A2, the dispersion relation can be approx
mated to read

g2'k2FA22um
2 2k2S 1

4
2

um
2

3A2D G . ~17!

The shift of the cutoff wave numberkc is given approxi-
mately bykc

2'4(A21um
2 /3), providedum!A, which is in

full agreement with Eq.~8!. However, the rectangular spe
trum exhibits one more unexpected and very important f
ture: It is evident that even ifg2,0 in the limit ask→0, g2

may become positive for finitek. In particular, whenk
52um , the growth rate of the perturbation is positive,g2

.0, independently of the spectrum widthum , in fact

g25
16um

4

exp~4um
2 /A2!21

.0. ~18!

Therefore even a very high degree of incoherence does
completely suppress the modulational instability when
spectrum is rectangular; cf. Fig. 1.

Even whenum@A and the MI is strongly suppresse
within the long wave range, there still exists a ‘‘resonanc
region of instability for wave numbersk around 2um given
by uk22umu,4um exp(2um

2 /A2). It is interesting to note tha
a similar phenomenon was found in@12# in an investigation
ly
e

s,
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of the effect of a nonlocal nonlinearity on the MI in a focu
ing Kerr medium. In particular, it was shown for a rectang
lar response function that the instability growth rate first d
creased for increasing width of the response function,
ultimately for large widths new modulationally unstab
bands appeared at finite wave numbers.

Since a rectangular profile is a very ideal and a bit art
cial form of the spectrum, we consider another example o
well localized spectrum in the form of a modified Lorent
ian, which exhibits similar properties to those of a rectang
lar profile, G(u)5(A2/p)@u0

3/(u41u0
4)# . Even in this case

the integral of Eq.~4! can be calculated in explicit form to
yield

FIG. 1. The effect of increasing rectangular spectrum widthum

on the MI. The parameterum runs fromum50 ~the top most curve!
in increments of 0.25 toum53 ~the bottommost curve!. As can be
seen, the instability is never completely suppressed.
E
2`

1` G~u!du

~g1 iku!21~k2/2!2
5

k4/42
k2u0

2

2
1S g1

ku0

A2
D 2

12S g1
ku0

A2
D ku0

A2

F S g1
ku0

A2
D 2

1S ku0

A2
1

k2

2 D 2GF S g1
ku0

A2
D 2

1S ku0

A2
2

k2

2 D 2G . ~19!
e-
we
any
t

Using this expression in the cutoff condition,g250, we ob-
tain the following result for the cutoff wave number:

kc
252A2H 16A114S u0

A D 2F12S u0

A D 2G J . ~20!

When 1,(u0 /A)2,(11A2)/2, the equation has two
positive roots implying that the MI is not complete
suppressed provided this condition is fulfilled. On the oth
hand,g2.0 only within a limited range of wave number
viz.,
r

U k2

2A2
21U,A114S u0

A D 2F12S u0

A D 2G . ~21!

In order to further illustrate the subtlety of the interplay b
tween the partial incoherence and the instability drive,
consider a multicarrier case where the field consists of m
mutually incoherent, but individually partially coheren
waves with a spectrum given byG(u)5(nGn(u2un). The
dispersion relation then becomes
1-3
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A2k2(
n
E

2`

1` Gn~u2un!du

~g1 iku!21~k2/2!2
51. ~22!

For simplicity we consider the particular case of equa
separated carriers, i.e.,un5an wheren is an integer, with
each carrier having a Lorentzian phase spectrum of the s
width

Gn~u2un!5
g~n!u0

p@~u2an!21u0
2#

. ~23!

The dispersion relation, Eq.~22!, can then be written as

A2k2(
n

g~n!

~G1 ikan!21k4/4
51, ~24!

where G5g1ku0. For a symmetric spectrum, i.e., whe
g(k)5g(2k), this dispersion relation can be rewritten
terms of real functions:

A2(
n

g~n!
X1~a1na!~a2na!

@X1~a1na!2#@X1~a2na!2#
51, ~25!

whereX5G2/k2, a5k/2, and the coefficientsg(n) are nor-
malized to unity,(ng(n)51. WhenX has a small positive
value, the sum in Eq.~25! has multiple resonant values
an5an, nÞ0. Consequently, one should expect the ex
tence of small positive rootsX of Eq. ~25! in the vicinity of
those resonances, independently of the structure of the s
trum envelopeg(n). That this indeed is the case is illustrate
in Fig. 2, which shows the result of a numerical evaluation
the sum for particular parameter values.

On the other hand, outside of these resonant bands
summation can be transformed into an integration oven
provided the spectrumg(n) is dense enough, i.e.,a
!A, ug(n11)2g(n)u!g(n);

A2E
2`

1`

g~n!
X1~a1na!~a2na!

@X1~a1na!2#@X1~a2na!2#
dn51. ~26!

This equation coincides with Eq.~4! if g(n)dn is replaced
by G(u)du andna is changed tou. It corresponds to the MI
of a continuous spectrum which coincides with the envelo
of the actual spectrum. For example, wheng(n)5 (1/p)
3@n0/(n21n0

2)#, wheren0@1, Eq. ~26! is reduced to the
following well-known expression: (G1kan0)25k2(A2

2k2/4). Thus, within this approximation, the MI is sup
02560
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pressed for all wave numbers providedan0.A. However, as
shown above, this is correct only outside the resona
bands, i.e., the localized regions around each 2an (nÞ0),
where G2.0, independently of the width of the envelop
(n0). To conclude, we have investigated the role of the
coherent spectrum profile on the properties of the modu
tional instability. The gain curve of the instability ma
smoothly shrink in amplitude and cutoff wave number w
increasing degree of incoherence, as is the case for a Lo
zian profile. However, it may also initially expand into th
wave numbers which are stable in the coherent regime a
the case for a Gaussian profile of the spectrum. When
spectrum is rectangular, we have shown that under the
cial resonance conditionk52um , the MI cannot be sup-
pressed completely no matter how strong the degree of in
herence. Using the modified Lorentzian profile w
demonstrate that the long wavelength threshold definition
which the MI is suppressed due to partial incoherence is
fact profile dependent. For this case, islands of posit
growth rate emerge at higher wave numbers. Lastly,
analysis of the modulational instability in the case of mu
carrier operation demonstrates new additional structure in
gain curve, where besides the main lobe, there also e
smaller peaks surrounding the discrete carrier phases.

FIG. 2. Numerical solution of Eq.~25! for multicarrier opera-
tion. The number of carriers is 10,a50.2, andn050.8. Top: Main
growth curve together with the small instability islands stemm
from the separate carriers. Bottom: An enlargement of the insta
ity curve. Notice the resonant peaks occurring beyond the regio
the main curve.
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