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Features of modulational instability of partially coherent light:
Importance of the incoherence spectrum
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It is shown that the properties of the modulational instability of partially coherent waves propagating in a
nonlinear Kerr medium depend crucially on the profile of the incoherent field spectrum. Under certain condi-
tions, the incoherence may even enhance, rather than suppress, the instability. In particular, it is found that the
range of modulationally unstable wave numbers does not necessarily decrease monotonically with increasing
degree of incoherence and that the modulational instability may still exist even when long wavelength pertur-
bations are stable.

DOI: 10.1103/PhysReVvE.69.025601 PACS nunierd2.65.Tg, 05.45.Yv, 42.65.Sf

The modulational instabilityMI) of coherent constant The starting point of our analysis is the normalized non-
amplitude waves in nonlinear Kerr media is one of the mostinear Schrdinger equation describing the one-dimensional
fundamental phenomena resulting from the interplay bepropagation of a partially incoherent wave in a dispersore
tween nonlinear phase modulation and linear dispersiordiffractive) nonlinear medium, viz.
diffraction and has attracted much interest over many years , 1 ) o
[1-3]. Recent advances in the area of nonlinear optics, in ()] (at)+ 3 (9%¢)] (x*) +(|$|*) =0, ()

articular new results concerning the nonlinear propagation - .
gf partially incoherent light andgthe advent of }i)ncghgrentWhere the bracke(,- ), denotes statistical averaff#l. This
solitons[4], have prompted a revisal of this issue during the€duation is valid under the assumption that the medium re-

past decade. The general understanding that emerged froshonse time is much larger than the characteristic time of the

these studies is that the wave intensity threshold for the onséfOChaSt'C Intensity fI_uctuat_pns. .
of the MI is increased by the wave incoherence. With this The modulational instability of small perturbations of the

picture in mind, it is remarkable that in a recent investigationﬁ%reSp?ng":g Stgadl)/ stgte SO';J;'OH T"S Ibtfaen arl?alyze('ja\usmg
of the transverse instabilityT]) of solitons[5], it was found ifferent, but equivalen{9], mathematical formalisms. An

that the range of modulationally unstable wave numbers di(fnalysis based on t_he formalism of the corr_elation _function
not monotonously decrease with increasing degree of inc 5,7,10, or on the Wigner approadi], results in the disper-

herence. In fact, it first increased until eventually it started to°
decrease. = . +=pg(p—KI2) ~ po(p+k/2)

Inspired by this result, we consider, in the present work, Kpti d
the problem of the modulational instability of partially co- o Y

herent waves in more detail and show that the picture is morg... po being the Wigner distribution function of the unper-

complipated than previously thought. In order to simplify theturbed cw wave. However, using the transformations:
analysis and to bring out clearly the new features, the analy- X

sis is carried out for the longitudinal modulational instability. pHk/2=0, p—k/2=0", Eq.(2) can be expressed as
We find that the effect of the incoherence on the Ml is sen- . (0')de’ . (6)de
sitive to the profile of the incoherent power spectrum. For thfj Po — m— =1
often used assumption of a Lorentzian incoherence spectrurd,~= k(6’ +k/i2+iy/k) J-=»h(0—ki2+ivylk)
the range of unstable wave numbers does indeed decrease
monotonously with increasing degree of incoherenceThis is then easily rewritten as
whereas, e.g., for a Gaussian spectrum, the range first in- .
creases and then starts to decrease monotonously. This result K2 J po(6)do =1 (4)
agrees well with the unexpected feature observed5in — KY4+ (ik9+ )2
Also, several other subtle effects are shown to be possible. In
particular, it is found that the threshold for the Ml to be which is the same expression as the coherent density ap-
completely quenched is not necessarily associated with theroach[11], provided we identifypy(6) =A?G(6) with A?
long wavelength limit. Modulations may be stable in this being the averaged normalized field intensity of the station-
limit, but still be unstable for finite wave numbers. This im- ary state and5(6) being its normalized angular spectrum.
plies that the threshold for total quench cannot, in a generalhroughout this Rapid Communication we will use both ex-
case, be determined by simplifying the analysis to considerpressions for the dispersion relation interchangeably, since
ing only the long wavelength limit as is done in, eld,7]. some parts of the analysis are most conveniently handled by
one approach, and some by the other.
An explicit analytical solution of the dispersion relation,
*Electronic address: sss@appl.sci-nnov.ru Eqg. (2) or Eq.(4), is possible only for some particular inco-

ion relation

p=1, 2

()
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herence spectra. Specifically, in the case of the LorentziawhereW(x)=0 if x<0, W(x)=1 if x>0, 6, is the bound-
spectrumG(6) = 0, /[ w( 6>+ 63)], whered, is the width of  ary of the spectrum an@ is a normalization constant. For
the spectrum, it has been shoy] that the solution can be this spectrum one can explicitly show that, depending on the
expressed as value of §,,, the cutoff shift may either increase or decrease
- _ with increasingé,.
vk, 60) = yo(k) —kfo ® Another perturbative solution of the dispersion equation

where y,(k) is the growth rate in the coherent cgsg(#)  for the Ml is possible in the long wave limit wheki< 6y,
=58(6)] i.e., yo(k) =kJAZ—K?/4, with A>>k?/4. This ana- Whered, is the characteristic width of the spectr@(6). In
lytical result shows explicitly that the effect of the incoher- this case one can use a Taylor expansion arqured the
ence, provided it is large enough, is to suppress the Ml fopumerator in Eq(2). IntroducingI’ = y/k we obtain
any value of the perturbation wave number. However, as will , ”
be demonstrated in this Rapid Communication, this resuli:_Azf“"G (p)dp— iAzsz'”G (p)dp (10
depends crucially on the form of the incoherence spectrum — pF+il’ 24 —o pHIT T
and is not a general feature of the Ml of partially incoherent
light. This simplified approximatiorfhowever, without the last

The restricted generality of the result expressed by(Bq. term on the right-hand side of E(LO)] was used previously
can be directly inferred by studying in more detail the prop-L7] to analyze the threshold condition for the suppression of
erties of the cutoff wave numbek,, i.e., the value ok at  the MI. Actually, assumingG(p)=G(—p) and I'=I"*
which the growth rate vanishes. According to Eg), valid <6, the first integral can be approximated as
for the Lorentzian spectrunk. is shifted monotonously to

the Ie;t (decrzeaS(Ze)dwith increasing degree of incoherence, f+°°G’(_p) dp=—J,+ 7Dy, (11)
0o: ki=4(A“—6;). For the case of a general coherence — pFil
spectrumk. is determined by the following equation:
where
+2G(0)do ' '
PVA? f — =1, 6 +o0G G
e K&/4— 6 © Ji=- f_ de, D,=- o (12)

p=0
where PV denotgs the Cau_chy p.rmC|paI value. Wr_]en th‘?/\/ithin this approximation the dispersion relation becomes
power spectrum is well localized, in the sense that its rms-
width is much smaller than the cutoff wavelength, the con- 7D [=J,— A2, (13)
tributions from the zeros of the denominator are negligible
and the denominator can be expanded to yield The equalityJ;=A"2 can thus be taken as determining the
threshold for MI development. While this is true in the limit
i%f” G(0) 1+ |de @) of vanishingk, it is clear that by taking into account also the
A2 J-x k§/4 ' next term in the expansion E(L0), instead of Eq(13), one
obtains the solution:
Keeping only the first two terms of the expansion one ob-

02
Ke/a

— 1 _A—2_ 112
tains an approximate solution for the effect of partial coher- mDil'=J,—A 21k s, 9
ence on the cutoff wave number as follows: where

K214~ A2+ (6?), ) J3= f +°C(G"’/p)dp. (15

where(6?)= [ 6>°G(6)dd. Thusk, is found to increase for
increasing degree of incoherence, which at first sight seenphis analysis is valid provide®,+0; in other cases a full
to be in contradiction to the behavior of the previously foundsolution of Eq.(10) is needed. Performing the calculations
exact solution for the Lorentzian spectrum. However, theone finds that for a Gaussian or a Lorentzian incoherence
Lorentz spectrum is not well localized in the sense definedpectrum, the values @, , J,, andJ; are all positive quan-
above, since the valug?) does not exist. A first indication tities. Thus in such cases, EG.3) provides a sufficient con-
of such an incoherence-induced increase of the range dfition for the suppression of the instability, as found in the
modulationally unstable wave numbers was observed bworks of Anastassioet al. [6] and Soljai et al. [7]. Nev-
Torreset al. [5] in a numerical study of the transverse insta-ertheless, there may exist spectra for which the fadtois
bility (TI) of soliton structures using a Gaussian spectral disnegative, implying there is positive growth of the perturba-
tribution. It should be emphasized though that the effect willtion for finite k, despite the fact that the solution of EG4.3)
occur for transverse as well as for longitudinal modulationalthe long wave limit givesI'><0. Consequently, the defini-
instabilities. Although the Lorentz spectrum proper is nottion for the suppression of the modulational instability as the
well localized, it can easily be made so by considering thehreshold value given by the long wavelength limit approxi-
bounded Lorentz spectrum, i.e., mation is not appropriate.
_ The simplest illustration of the ambiguity of the threshold
G(0,00,0m) = (L/m)[ 00/ (6°+ ) ICW(0,—16]), (9  condition based on the long wavelength limit can be given
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by analyzing a rectangular spectrum profile wi@(p)
=1/26,, for p in the interval — 6,,<p<6,,, whereasG(p)

=0 outside this interval. For this simple spectrum, the inte-

gral in Eq.(4) may be evaluated exactly and the following
dispersion relation is obtained:

K6

2
2:k2 —___02 .
tanhko,,/A2) 4 "

(16)

In the limit k#,,<A?, the dispersion relation can be approxi-
mated to read

1 6
Y2~ K2 A2—a2m—k2( . (17

4 3p

The shift of the cutoff wave numbet. is given approxi-
mately bykZ~4(A%+ 62/3), providedd,<A, which is in
full agreement with Eq(8). However, the rectangular spec-

trum exhibits one more unexpected and very important fea:

ture: It is evident that even §?<0 in the limit ask—0, y?
may become positive for finit&k. In particular, whenk
=26,,, the growth rate of the perturbation is positivg
>0, independently of the spectrum widi,, in fact

, 166%

-——— " >0 18
’ exp(462/A%) —1 (18
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FIG. 1. The effect of increasing rectangular spectrum wigth
on the MI. The parametét,, runs fromé,,=0 (the top most curve
in increments of 0.25 t@,,=3 (the bottommost curyeAs can be
seen, the instability is never completely suppressed.

of the effect of a nonlocal nonlinearity on the Ml in a focus-
ing Kerr medium. In particular, it was shown for a rectangu-
lar response function that the instability growth rate first de-
creased for increasing width of the response function, but
ultimately for large widths new modulationally unstable

Therefore even a very high degree of incoherence does né@nds appeared at finite wave numbers. o
completely suppress the modulational instability when the Since a rectangular profile is a very ideal and a bit artifi-

spectrum is rectangular; cf. Fig. 1.
Even whenéd,>A and the MI is strongly suppressed

cial form of the spectrum, we consider another example of a
well localized spectrum in the form of a modified Lorentz-

within the long wave range, there still exists a “resonance”ian, which exhibits similar properties to those of a rectangu-

region of instability for wave numbets around @, given
by |k— 26| <46, exp(— 2/A%. It is interesting to note that
a similar phenomenon was found[ib2] in an investigation

lar profile, G(0) = (\2/7)[ 63/(6*+ 63)]. Even in this case
the integral of Eq(4) can be calculated in explicit form to
yield

2

k%4 k205+ + k0o +2| v+ Ko ko
[r_cwdr 2 "\ ) VT )R 19
—o (y+ik0)2+ (K2[2)2 k6|~ [ko, K2\° k|~ (ko K2\°]
yvF—| +| —=+ = yvF—| +|—=—- =
V2 V2 2 V2 V2 2
|
Using this expression in the cutoff conditiop?=0, we ob- K2 0\ 2 0\ 2
tain the following result for the cutoff wave number: E_l < \/1+4(K> [1_(K> } (21

00 2 2
k§=2A2{1t \/1+4 —) 1-

A
When 1< (6,/A)?<(1+2)/2, the equation has two
positive roots implying that the MI is not completely

0
A ] . (20

In order to further illustrate the subtlety of the interplay be-
tween the partial incoherence and the instability drive, we
consider a multicarrier case where the field consists of many

suppressed provided this condition is fulfilled. On the othemutually incoherent, but individually partially coherent

hand, >0 only within a limited range of wave numbers,
viz.,

waves with a spectrum given §(6)==,G.(6—6,). The
dispersion relation then becomes

025601-3



RAPID COMMUNICATIONS

ANDERSONZet al. PHYSICAL REVIEW E 69, 025601 (2004

1 T T T T T T T
(22 0.8
0.6r
L . . =
For simplicity we consider the particular case of equally o4
separated carriers, i.ef,= an wheren is an integer, with

each carrier having a Lorentzian phase spectrum of the sam . . ‘ : , .
width 05 1 15 2 25 3 35 4

+=  Gp(6—6,)d6 .
—o (y+ik6)2+(K32)2

A2
n

T

g(n) by 0.1
. 23
[ (6—an)?+ 03] @3

Gn(0—0,)=

The dispersion relation, Eg22), can then be written as ﬁ
b h
n
A2 , 9(n) =1, (24) . ﬂ ﬂ ﬂ |
n (I +ikan)?+k*4 1 15 2 25 3 35 4

k

where I'=y+k#,. For a symmetric spectrum, i.e., when  FIG. 2. Numerical solution of Eq(25) for multicarrier opera-
g(k)=g(—k), this dispersion relation can be rewritten in tion. The number of carriers is 1@,=0.2, andny=0.8. Top: Main

terms of real functions: growth curve together with the small instability islands stemming
from the separate carriers. Bottom: An enlargement of the instabil-
X+(a+na)(a—na) ity curve. Notice the resonant peaks occurring beyond the region of
A2 g(n) 2 >-=1, (25  the main curve.
n [X+(a+na) ][ X+(a—na)?]

whereX=T"2/k?, a=k/2, and the coefficientg(n) are nor-  Pressed for all wave numbers provided,>A. However, as

malized to unity,S,g(n)=1. WhenX has a small positive Shown above, this is correct only outside the resonance
value, the sum in Eq(25) has multiple resonant values at bands, i.e., the localized regions around eaem Zn+0),
a,=an, n#0. Consequently, one should expect the exiswhere'*>0, independently of the width of the envelope
tence of small positive rootX of Eq. (25) in the vicinity of ~ (ng). To conclude, we have investigated the role of the in-
those resonances, independently of the structure of the speasherent spectrum profile on the properties of the modula-
trum envelopeay(n). That this indeed is the case is illustrated tional instability. The gain curve of the instability may
in Fig. 2, which shows the result of a numerical evaluation ofsmoothly shrink in amplitude and cutoff wave number with
the sum for particular parameter values. increasing degree of incoherence, as is the case for a Lorent-
On the other hand, outside of these resonant bands, th&an profile. However, it may also initially expand into the
summation can be transformed into an integration aver wave numbers which are stable in the coherent regime as is
provided the spectrumg(n) is dense enough, i.ea  the case for a Gaussian profile of the spectrum. When the

<A, |g(n+1)—g(n)[<g(n); spectrum is rectangular, we have shown that under the spe-
. X+ (a-+na)(a—na) cial resonance conditiok=26,,, the M| cannot be sup-

Azf g(n) @ @ n=1. (26) pressed comp_letely no matte_r_how strong t_he degret_a of inco-
- [X+(a+na)?][X+(a—na)?] herence. Using the modified Lorentzian profile we

demonstrate that the long wavelength threshold definition at
This equation coincides with Ed4) if g(n)dn is replaced  which the Ml is suppressed due to partial incoherence is in
by G(6)d6 andne« is changed td@. It corresponds to the Ml fact profile dependent. For this case, islands of positive
of a continuous spectrum which coincides with the envelopgjrowth rate emerge at higher wave numbers. Lastly, our
of the actual spectrum. For example, whetm)= (1/m)  analysis of the modulational instability in the case of multi-
X[no/(n?+ ntz))], whereny>1, Eq. (26) is reduced to the carrier operation demonstrates new additional structure in the
following well-known expression: I{+kang)?=k?(A%?  gain curve, where besides the main lobe, there also exist
—k?/4). Thus, within this approximation, the MI is sup- smaller peaks surrounding the discrete carrier phases.
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